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Abstract-In many enterprises today, WAN optimizers are 
being deployed in order to eliminate redundancy in network 
traffic and reduce WAN access costs. In this paper, we present 
the design and implementation of ERE, an alternate approach 
where redundancy elimination (RE) is provided as an end 
system service. Unlike middleboxes, such an approach benefits 
both end-to-end encrypted traffic as well as traffic on last-hop 
wireless links to mobile devices. 
ERE needs to be fast, adaptive and parsimonious in memory 
usage in order to opportunistically leverage resources on end 
hosts. Thus, we design a new fingerprinting scheme called 
SampleByte that is much faster than Rabin fingerprinting 
while delivering similar compression gains. Unlike Rabin 
fingerprinting, SampleByte can also adapt its CPU usage 
depending on server load. Further,we introduce optimizations 
to reduce server memory footprint by 33-75% compared to 
prior approaches.Using several terabytes of network traffic 
traces from 11 enterprise sites, testbed experiments and a pilot 
deployment,we show that ERE delivers 26%bandwidth 
savings on average, processes payloads at speeds of 1.5-4Gbps, 
reduces end-to-end latencies by up to 30%, and translates 
bandwidth savings into equivalent energy savingson mobile 
smartphones. 
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1. DEFINING THE CLOUD COMPUTING 
Cloud computing refers to both the applications delivered 
as services over the Internet and the hardware and systems 
software in the data centers that provide those services. The 
services themselves have long been referred to as Software 
as a Service (SaaS).a Some vendors use terms such as IaaS 
(Infrastructure as a Service) and PaaS (Platform as a 
Service) to describe their products, but we eschew these 
because accepted definitions for them still vary widely. The 
line between "low-level" infrastructure and a higher-level 
"platform" is not crisp. We believe the two are more alike 
than different, and we consider them together. Similarly, 
the related term "grid computing," from the high-
performance computing community, suggests protocols to 
offer shared computation and storage over long distances, 
but those protocols did not lead to a software environment 
that grew beyond its community. 
Cloud computing, the long-held dream of computing as a 
utility, has the potential to transform a large part of the IT 
industry, making software even more attractive as a service 
and shaping the way IT hardware is designed and 
purchased. Developers with innovative ideas for new 
Internet services no longer require the large capital outlays 
in hardware to deploy their service or the human expense to 
operate it. They need not be concerned about 
overprovisioning for a service whose popularity does not 
meet their predictions, thus wasting costly resources, or 

underprovisioning for one that becomes wildly popular, 
thus missing potential customers and revenue. Moreover, 
companies with large batch-oriented tasks can get results as 
quickly as their programs can scale, since using 1,000 
servers for one hour costs no more than using one server 
for 1,000 hours. This elasticity of resources, without paying 
a premium for large scale, is unprecedented in the history 
of IT. 
 

2. INTRODUCTION 
With the advent of globalization, networked services have a 
global audience, both in the consumer and enterprise 
spaces. For example, a large corporation today may have 
branch offices at dozens of cities around the globe. In such 
a setting, the corporation’s IT admins and network planners 
face a dilemma. On the one hand, they could concentrate IT 
servers at a small number of locations. This might lower 
administration costs, but increase network costs and latency 
due to the resultant increase in WAN traffic. On the other 
hand, servers could be located closer to clients; however, 
this would increase operational costs. 
This paper arises from the quest to have the best of both 
worlds, specifically, having the operational benefits of 
centralization along with the performance benefits of 
distribution. In recent years, protocol-independent 
redundancy elimination, or simply RE has helped bridge 
the gap by making WAN communication more efficient 
through elimination of redundancy in traffic. Such 
compression is typically applied at the IP or TCP layers, for 
instance, using a pair of middleboxes placed at either end 
of a WAN link connecting a corporation’s data center and a 
branch office. Each box caches payloads from flows that 
traverse the link, irrespective of the application or protocol. 
When one box detects chunks of data that match entries in 
its cache (by computing “fingerprints”of incoming data and 
matching them against cached data), it encodes matches 
using tokens. The box at the far end reconstructs original 
data using its own cache and the tokens. This approach has 
seen increasing deployment in “WAN optimizers”. 
 

3. MOTIVATION 
In exploring an end-point based RE service, one of the 
main issues we hope to address is whether such a service 
can offer bandwidth savings approaching that of WAN 
optimizers. To motivate the likely benefits of an end-point 
based RE service, we briefly review two key findings from 
our earlier study [8] of an IP-layer WAN Optimizer. 
First, we seek to identify the origins of redundancy. 
Specifically, we classify the contribution of redundant byte 
matches to bandwidth savings as either intra-host(current 
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and matched packet in cache have identical source-
destination IP addresses) or inter-host (current and matched 
packets differ in at least one of source or destination IP 
addresses). We were limited to a 250MB cache size given 
the large amount of meta-data necessary for this analysis, 
though we saw similar compression savings for cache sizes 
up to 2GB. Surprisingly, our study revealed that over 75% 
of savings were from intra-host matches. This implies that a 
pure end-to-end solution could potentially deliver a 
significant share of the savings obtained by an IP WAN 
optimizer, since the contribution due to inter-host matches 
is small. However, this finding holds good only if end 
systems operate with similar (large) cache sizes as 
middleboxes, which is impractical. This brings us to the 
second key finding. 
 

4 DESIGN GOALS 
ERE  is designed to optimize data transfers in the direction 
from servers in a remote data center to clients in the 
enterprise, since this captures a majority of enterprise 
traffic. We now list five design goals for ERE—the first 
two design goals are shared to some extent by prior RE 
approaches, but the latter three are unique to ERE. 
 
1.  Transparent operation: For ease of deploy-ability,the 

ERE service should require no changes to existing 
applications run within the data center or on clients. 

2.  Fine-grained operation: Prior work has shown that 
many enterprise network transfers involve just a few 
packets. To improve end-to-end latencies and provide 
bandwidth savings for such short flows, ERE must 
work at fine granularities, suppressing duplicate byte 
strings as small as 32-64B. This is similar to ,but 
different from earlier proposals for file-systems  and 
Web caches where the sizes of redundanciesidentified 
are 2-4KB. 

3.  Simple decoding at clients: ERE’s target client set 
includes battery- and CPU-constrained devices such as 
smart-phones. While working on fine granularities can 
help identify greater amounts of redundancy, it can 
also impose significant computation and decoding 
overhead, making the system impractical for these 
devices. Thus, a unique goal is to design algorithms 
that limit client overhead by offloading all compute-
intensive actions to servers. 

4.  Fast and adaptive encoding at servers: ERE is 
designed to opportunistically leverage CPU resources 
on end hosts when they are not being used by other 
pplications. 
Thus, unlike commercial WAN optimizers and prior 
RE approaches [20], ERE must adapt its use of CPU 
based on server load. 

5.  Limited memory footprint at servers and clients: 
ERE relies on data caches to perform RE. 
However,memory on servers and clients could be 
limited and may be actively used by other applications. 
Thus, ERE must use as minimal memory on end-hosts 
as possible through the use of optimized data 
structures. 
 

5 ERE DESIGN 
In this section, we describe how ERE’s design meets the 
above goals. 
ERE introduces RE modules into the network stacks of 
clients and remote servers. Since we wish to be transparent 
to applications, ERE could be implemented either at the IP-
layer or at the socket layer (above TCP).  As we argue , we 
believe that socket layer is the right place to implement 
ERE. Doing so offers key performance benefits over an IP-
layer approach, and more importantly, shields EndRE from 
network-level events (e.g., packet losses and reordering), 
making it simpler to implement. 
There are two sets of modules in ERE, those belonging on 
servers and those on clients. The server-side module is 
responsible for identifying redundancy in network data by 
comparing against a cache of prior data, and encoding the 
redundant data with shorter meta-data.The meta-data is 
essentially a set of <offset, length> tuples that are 
computed with respect to the client-side cache. The client-
side module is trivially simple: it consists of a fixed-size 
circular FIFO log of packets and simple logic to decode the 
meta-data by “de-referencing” the offsets sent by the 
server. Thus, most of the complexity in ERE is mainly on 
the server side and we focus on that here. Identifying and 
removing redundancy is typically accomplished [20, 7] by 
the following two steps: 
• Fingerprinting: Selecting a few “representative regions” 

for the current block of data handed down by 
application(s). We describe four fingerprinting 
algorithms that differ in the trade-off they impose 
between computational overhead on the server and the 
effectiveness of RE. 

• Matching and Encoding: Once the representative regions 
are identified, we examine two approaches for 
identification of redundant content : (1) Identifying 
chunks of representative regions that repeat in full 
across data blocks, called Chunk-Match and (2) 
Identifying maximal matches around the representative 
regions that are repeated across data blocks, called 
Max- Match. These two approaches differ in the trade-
off between the memory overhead imposed on the 
server and the effectiveness of RE. 

 
6 IMPLEMENTATION 

In this section, we discuss our implementation of ERE. 
We start by discussing the benefits of implementing ERE at 
the socket layer above TCP. 
6.1 Performance benefits 
Bandwidth: In the socket-layer approach, RE can operate 
at the size of socket writes which are typically larger than 
IP layer MTUs. While Max-Match and Chunk-Match do 
not benefit from these larger sized writes since they operate 
at a granularity of 32 bytes, the large size helps produce 
higher savings if a compression algorithm like GZIP is 
additionally applied, as evaluated. 
Latency: The socket-layer approach will result in fewer 
packets transiting between server and clients, as opposed to 
the IP layer approach which merely compresses packets 
without reducing their number. This is particularly useful in 
lowering completion times for short flows, as evaluated. 
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6.2 End-to-end benefits 
Encryption: When using socket-layer RE, payload 
encrypted in SSL can be compressed before 
encryption,providing RE benefits to protocols such as 
HTTPS. Iplayer RE will leave SSL traffic uncompressed. 
 
Cache Synchronization: Recall that both Max-Match and 
Chunk-Match require caches to be synchronized between 
clients and servers. One of the advantages of implementing 
ERE above TCP is that TCP ensures reliable in-order 
delivery, which can help with maintaining cache 
synchronization. However, there are still two issues that 
must be addressed. 
First, multiple simultaneous TCP connections may be 
operating between a client and a server, resulting in 
ordering of data across connections not being preserved. 
To account for this, we implement a simple sequence 
number-based reordering mechanism. Second, TCP 
connections may get reset in the middle of a transfer. Thus, 
packets written to the cache at the server end may not even 
reach the client, leading to cache inconsistency. One could 
take a pessimistic or optimistic approach to maintaining 
consistency in this situation. In the pessimistic approach, 
writes to the server cache are performed only after TCP 
ACKs for corresponding segments are received at the 
server. The server needs to monitor TCP state, detect 
ACKs, perform writes to its cache and notify the client to 
do the same. In the optimistic approach, the server writes to 
the cache but monitors TCP only for reset events. In case of 
connection reset (receipt of a TCP RST from client or a 
local TCP timeout), the server simply notifies the client of 
the last sequence number that was written to the cache for 
the corresponding TCP connection. It is then the client’s 
responsibility to detect any missing packets and recover 
these from the server. We adopt the optimistic approach of 
cache writing for two reasons: (1) Our redundancy analysis 
indicated that there is high temporal locality of matches; a 
pessimistic approach over a high bandwidth-delay product 
link can negatively impact compression savings; (2) The 
optimistic approach is easier to implement since only for 
reset events need to be monitored rather than every TCP 
ACK. 
 
 

7. CONCLUSION 
Using extensive traces of enterprise network traffic and 
testbed experiments, we show that our end-host based 
redundancy elimination service, EndRE, provides average 
bandwidth gains of 26% and, in conjunction with DOT, the 
savings approach that provided by a WAN optimizer. 
Further, ERE achieves speeds of 1.5-4Gbps, provides 
latency savings of up to 30% and translates bandwidth 
savings into comparable energy savings on mobile 
smartphones. In order to achieve these benefits,EndRE 
utilizes memory and CPU resources of end systems. 
For enterprise clients, we show that median memory 
requirements for ERE is only 60MB. At the server end, we 
design mechanisms for working with reduced memory and 
adapting to CPU load. 
Thus, we have shown that the cleaner semantics of end-to-
end redundancy removal can come with considerable 
performance benefits and low additional costs. This makes 
ERE a compelling alternative to middleboxbased 
approaches. 
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